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Introduction 
      

Approximately 400 microbial genomes have been sequenced and entered into public 
domain databases. In spite of this wealth of genomic information, DNA based methods for the 
identification of human pathogens and the detection of environmental microbes are limited to the 
identification of a few species-specific genomic sequences from relatively few organisms. 
Bacterial genomes typically contain between 1 x 106 and 1 x 107 nucleotides. Their large size is a 
limiting factor in the ability to identify unique sequences within their genomes because 
mathematical algorithms that identify unique sequences become increasingly complex as the size 
of the genome increases (1-3). Unique sequences, identified from viral genomes, which may be 
more than three orders of magnitude smaller than bacterial genomes, have been used to identify 
and characterize viruses on a microarray platform (4,5). The search for unique sequences that 
may be used to identify bacteria is currently limited to highly conserved sequences such as the 
ribosomal genes (6-9) or to toxin genes that are responsible for the pathogenicity of specific 
microorganisms (10-12). The large size and number of bacterial genomes make it difficult and 
costly to manufacture microarrays that contain every possible oligonucleotide from every 
sequenced organism. We have developed a method that identifies regions of unique genomic 
sequence from large microbial genomes. These unique sequences may be utilized for the 
identification and characterization of biological threat agents, genetically manipulated microbes 
and medically or agriculturally significant bacteria and viruses. Our method utilizes a modified 
BLAST search algorithm (13,14) to identify unique regions of genomic DNA and RNA. Unique 
regions can be used as amplification targets in PCR based detection platforms (15-22) or used to 
generate unique oligonucleotides with specific hybridization characteristics for use on a 
microarray platform. Accurate strain level identification of an organism is best accomplished by 
combining information from unique genomic sequence with other strain-specific identifiers such 
as toxin genes, virulence plasmids, antibiotic resistance genes and ribosomal RNA gene 
sequences. Although the unique sequence data can be used with any detection platform, utilizing 
multiple oligonucleotide markers per organism, on a microarray format, significantly reduces the 
false positive detection rate. 
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Methods and Procedures 
 

Unique Sequence Identification: Our bioinformatic method utilizes a BLAST search 
algorithm to identify unique regions of genomic DNA. A database of genomic sequence is 
created which contains all DNA sequences available in the public domain. This database is 
stored on a local computer. A single genome is retrieved from the database in FASTA format. 
All sequences from the genome of interest are removed from the sequence database. The 
genomic sequence of interest is fragmented and used as the query sequence in a BLAST search 
against the local database from which it was obtained. The BLAST output file is parsed to 
identify fragments lacking similarity to other organisms. For this application an E value of e-5 is 
used as the cutoff score for the BLAST search. Scores greater than e-5 are considered to be 
unique, while those with a score lower than e-5 are not. Unique regions are fragmented further 
and the BLAST search is repeated until the search does not identify any more non-unique 
sequences. Once all genomic sequences have been characterized, amplification primers and 
oligonucleotides for manufacturing microarrays are identified from the unique genomic 
fragments using commercially available primer design bioinformatic tools. 

 
Microarray Manufacturing and Hybridization: Microarrays were manufactured by 

Combimatrix Inc. (Mukitteo, WA). Microarrays were hybridized and washed according to 
protocols provided with the microarrays. Hybridizations were performed at 450C in hybridization 
buffer provided by Combimatrix, Inc. 5ng of labeled DNA was hybridized to each array.  

 
Fluorescent Probe Generation: Probe was generated by the random incorporation of Cy3-

dCTP during a Klenow labeling reaction. 50ng of genomic or environmental DNA labeled with 
an Invitrogen Klenow Labeling kit (Invitrogen Inc., Carlsbad, NM) for 2 hours. Labeled DNA 
was purified through a YM30 column (Millipore Inc., Billerica, MA) as recommended by the 
manufacturer. 

  
Microarray Analysis: Combimatrix microarrays were scanned on an Axon fluorescent 

scanner at PMT settings of 500, 750 and 1000. Hybridization intensity at 532nm was determined 
for each oligonucleotide on the array and visualized with Spotfire visualization software 
(Spotfire Inc, Somerville, MA). Each oligonucleotide is present in duplicate on the arrays, which 
are hybridized in triplicate for each sample. Microarrays contain internal hybridization controls 
used to perform rigorous quality control by Combimatrix after microarray synthesis. The same 
controls are used to monitor the quality of hybridization. 
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Results 
 
Whole Genome Amplification 

Whole genome amplification was performed in the presence of Cy-3 dCTP with the 
intent that amplification and fluorescent labeling of the genomic amplicons be performed 
simultaneously. Figure 1 is an agarose gel of randomly amplified DNA from B. subtilis, C. 
perfringens and E. coli. This figure demonstrates that the amplification occurs at the various 
concentrations cy3-dCTP in each of the organisms tested, however, optimal incorporation of the 
fluorescent dye occurs at 40uM concentration. This is evident by the difference in color of the 
high molecular weight smear in the 40uM lanes in the gel, from green to a shade of yellow.  This 
level of incorporation is significant because the ability to detect unique sequence on a microarray 
is directly proportional to the amount of label incorporated into the amplification product.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Random amplification and labeling of genomic DNA: Maximum incorporation of cy3- dCTP 

into the amplification product occurs with a cy3-dCTP concentration of 40uM demonstrated by the color shift in the 
high molecular weight smear on this agarose gel.  

 
 
To further demonstrate the ability to randomly amplify genomic material lambda phage 

DNA was digested with the restriction enzymes to generate the banding pattern seen on the 
agarose gel on the left in Figure 2. This DNA was transferred to a nitrocellulose membrane. A 
small amount of the digested DNA was used as the template for a random amplification reaction. 
The random amplification was performed incorporating a biotin label into the amplified product. 
The amplified product was hybridized to the nitrocellulose membrane containing the digested 
DNA and detected with a streptavidin conjugate. The presence and relative intensity of each 
band on the nitrocellulose (right side of Figure 2) matches the intensity of each band on the 
agarose gel on the left. This demonstrates that each of the fragments of the digested DNA was 
labeled equally indicating that the labeling was random and not dependent on the size of the 
DNA fragment. This is important when considering that during an amplification reaction, DNA 
fragments of all sizes are generated. If the amplification were preferential for a particular size 
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range then the amplification would most likely not be random and some of the sequences would 
be under or over represented in the final amplified product.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Random amplification of genomic DNA: An agarose gel of restriction enzyme digested 

Lambda DNA (left) and a southern blot of the same fragmented DNA hybridized with randomly amplified DNA. 
The relative intensities of the bands on the southern blot match the intensities of the bands on the agarose gel. This 
indicates that amplification is not dependent on the size of the DNA fragment. 

 
 
 

Unique Sequence Analysis 
Unique sequence was generated for each of the organisms listed in Table 1. The fifth 

column in that table presents the number of bases of unique sequences available for microarray 
design. Even though the percent of unique sequence for some of these organisms is below 1%, 
the size of the genome ensures that sufficient sequence is available to generate enough 
oligonucleotides for microarray design. An oligonucleotide design software, Oligo 6, was used to 
identify oligonucleotides that would be useful for probes on a microarray. The length of each 
oligo is 50 nucleotides long with a melting temperature of 700C.  
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Table 1. Unique sequences generated for 10 organisms: Due to the larger size of the bacterial genomes there is 
more total unique sequence available for oligonucleotide design in bacteria than in viruses.  
 
 

Oligos identified with this software were used to manufacture spotted microarrays. The 
array presented in Figure 4 contains unique oligonucleotides from vaccinia virus, E. coli 
O157:H7, E. coli K12 and C. perfringens. This array was hybridized with an amplicon that 
corresponded to a region from which unique oligos were identified. The specific pattern of 
hybridization to the C. perfringens oligos in the upper left portion of the array demonstrates the 
ability to identify genomic DNA by oligonucleotide hybridization. In addition, the missing spots 
within this cluster of oligos that hybridized to the genomic material acts as a warning that not all 
oligos will hybridize to the genomic material. This has a great deal to do with the ability of the 
Oligo 6 program to correctly identify oligonucleotides that have matching melting temperatures 
and the lack of secondary structure. These data act as a warning that as good as a bioinformatic 
tool is, laboratory validation is a critical component of the microarray development process. The 
fact that 13 of the 15 spots accurately hybridized to the array demonstrates that the process of 
labeling and hybridization to a microarray works.  
 
 Unique sequence from the O157:H7 and K12 strains of E. coli was identified using 
SAIC’s unique sequence identifier software, now called FIGUR (Fast Identification of Genomic 
Unique Regions). This software tool was automated under a contract with the FBI however; the 
function of the automated software remains identical, in practice, to the software that was 
originally developed by SAIC. The unique sequence analysis for O157:H7 and K12 was 
performed with SAIC internal funds however the subsequent steps for the identification and 
validation of unique oligonucleotides was performed under DARPA funding.  
 
 Unique sequence was identified from O157:H7 and K12. Figure 3 is a graphic 
representation of the unique sequence available for O157:H7.  In this figure, green represents 
non-unique regions of the genome and yellow represents a mixture of smaller unique and non-
unique regions that are below the resolution of the computer screen. These yellow regions, when 
zoomed in, actually contain red and green bands representing the unique and non-unique 
sequence from which they were derived. Large blocks of unique sequence would appear to be 
red on this graphic representation.  
 
 
 
 

Organism Accession Number # unique sequences Average size (bp) Total unique seuqence (bp) Size of genome (bp) % unique
Bacillus Anthracis NC_003995 91 500 39,000 5,093,554 0.77
Yersinia Pestis NC_004088 15 1000 15,000 4,600,755 0.33
Brucella Melitensis Chromosome 1 NC_003317 7 160 1,300 2,117,144 0.06
Clostridium perfringens NC_003366 581 600 360,000 3,031,430 11.88
Escherica coli O157:H7 NC_002695 231 500 130,000 5,498,450 2.36
Escherica coli K12 NC_000913 55 500 27,000 4,639,221 0.58
Vaccinia NC_001559 8 160 1,400 191,737 0.73
Ebola NC_003549 4 1000 4,000 18,959 21.10
Eastern Equine Encephalitis Virus NC_003899 2 1000 2,000 11,675 17.13
Francisella tularensis pOM1 Plasmid NC_002109 4 600 2400 4,442 54.03
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Figure 3. Unique sequence graphic representation for E. coli O157:H7: This graphic represents the genome of 
E. coli O157:H7. Unique sequences are contained within the yellow bands of the genome while non-unique are 
contained in the green regions. Unique sequences make up 7.55% of the E. coli O157:H7 genome. Oligonucleotides 
generated to the unique regions of the genome are used to manufacture microarrays for the discrimination of this 
strain from other strains. These unique regions are strain specific. 
 
 
 There was 7.55% unique sequence in the genome of E. coli O157:H7 when this genome 
was compared to the genomic sequence of all other organisms in the NCBI database, to include 
several other strains of E. coli. Although 7.55% is not a large percentage, it is what one might 
expect when comparing organisms for strain level differences. It has been our experience that 
when an organism is the single entry in the NCBI for its genus/species, the amount of unique 
sequence identified can be as high as an order of magnitude greater. 7.55% of the E. coli genome 
represents 425,377 bases of unique sequence in approximately 1000 fragments from which to 
identify unique oligonucleotides.  The software identified a similar amount of unique sequence 
from the K12 strain.  
 
 
Unique Oligonucleotide Identification/Array Construction 

The 7.55% unique sequences of the genome represent a significant pool of sequence from 
which to derive unique oligonucleotides for array construction. We identified approximately 150 
oligonucleotides that contain 50 nucleotides of unique sequence, with a Tm of 700C from the 
unique genomic sequence available. 150 oligonucleotide probes were identified for K12 and 
Clostridium perfringens. C. perfringens will act as our negative control on the microarrays. In 
addition to the 150 oligonucleotide probes generated from the unique genomic regions of 
O157:H7, we identified oligonucleotides from the virulence genes contained within the genome 
of O157:H7. All of these oligonucleotides as well as oligonucleotide probes for 5 other 
organisms were used to manufacture arrays. The construction of the arrays was preformed by 
Combimatrix Inc, who has developed a method of in-situ oligonucleotide array manufacturing. 
Figure 4 is an example of a hybridized array. Each array can contain 902 oligonucleotides in 
addition to approximately 100 standard QC oligonucleotides present on the array to monitor 
quality of manufacturing and hybridization.   
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Figure 4. Hybridized microarray. A microarray hybridized with cy-3 d-CTP labeled DNA containing 902 unique 
oligonucleotides and 100 oligonucleotide standards. Oligonucleotides that are recognized by the probe “light-up” 
green. The brighter the spot, the more likely that a complimentary piece of DNA is present in the genome. Direct 
analysis of these data with software designed to detect subtle differences in hybridization intensity yields 
informative data that demonstrates the quality of hybridization.  
 
 
Discrimination Between E. coli K12 and O157:H7 by Microarray Analysis.  
 Microarrays containing E. coli K12 and O157:H7 50mer oligonucleotide probes to the 
genomes of both organisms, oligonucleotide probes specific for virulence genes from O157:H7 
and 50mers specific for the unique regions of the Clostridium perfringens genome were 
hybridized with fluorescently labeled DNA purified from C. perfringens, E. coli K12 and E. coli 
O157:H7. Fluorescent probe was generated from these genomes by the random incorporation of 
cy3-dCTP in a klenow reaction. A popular method of displaying microarray data is through the 
use of a scatter plot. The scatter plots in Figure 5 represent the comparison on arrays hybridized 
with O157:H7 and K12, virulence gene hybridization and the hybridization of C. perfringens 
DNA. The two lobed pattern in panel A is typical of a hybridization to an array that contains 
oligonucleotides derived from the genomes of two organisms for which DNA sequence is 
available in the NCBI databases. Microarrays manufactured with oligonucleotide probes and 
hybridized with genomic DNA from the same organism clearly represent the best-case scenario 
for the identification of an organism. The scatter plot presented in panel A represents data 
obtained from an array designed to screen through many oligonucleotide probes in order to 
identify the most informative probes. The spots on the array that are circled in yellow represent 
the oligonucleotides that have the greatest differential intensity of hybridization and are thus the 
most informative oligos for the discrimination between E. coli O157:H7 and K12. The bar graph 
in panel B presents the most informative oligos for O157:H7 and K12. Panel C presents the 
hybridization intensity of the virulence genes found in O157:H7. These various colors of spots 
each represent a different virulence gene.  The scatter plot in panel D is the comparison of two C. 
perfringens hybridizations. The blue spots represent ribosomal genes while the green spots 
represent C. perfringens unique genomic regions. The large number of multi-colored spots in the 
bottom left corner near the origin represent the E. coli specific oligonucleotides. There is no 
cross hybridization between E. coli and to the probes for the five other organisms represented on 
the microarray.  
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      A       B 

   
      C         D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. E. coli strain resolution and Clostridium perfringens ribosomal RNA gene detection:  Panel A. is a 
scatter plot of intensity data for two identical high-density screening arrays, one hybridized with E. coli O157:H7, 
the other with E. coli K12. E. coli O157:H7 sequences are red. E. coli K12 sequences are brown. The yellow circles 
are placed around the spots representing oligonucleotides that would be used on a second-generation array. The bar 
graph in panel B. presents the hybridization data for the 25 oligonucleotides (located within the yellow highlighted 
area of panel A.) that have the greatest differential of hybridization between the two organisms. Panel C. presents 
the virulence genes from a hybridization with E. coli O157:H7 DNA vs. E. coli K12. Panel D. presents a scatter plot 
of an identical array hybridized with Clostridium perfringens DNA. The light blue spots represent the hybridization 
intensity for the ribosomal genes for Clostridium perfringens. The greens spots represent the hybridization intensity 
for C. perfringens chromosomal specific sequences. The remaining spots near the origin represent the intensity of 
hybridization of E. coli specific-oligonucleotides illustrated in panel A. and C. to the C. perfringens Cy-3 dCTP 
labeled probe.   
 
Array Specificity and Complex Backgrounds  
 Arrays containing probes for multiple organisms can be used to determine the sensitivity 
and specificity of the microarray platform. The array utilized in the above experiment contains 
oligonucleotide specific to numerous organisms. Table 2 outlines the array design. This array, 
when hybridized with either E. coli strain or with a probe to C. perfringens did not hybridize to 
the oligos designed to other organisms (Figure 5).  
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E. coli genomic sequences: 
151 unique sequences for E. coli K12 
152 unique sequences for E. coli 0157:H7 
 
E. coli Toxin Genes: 
5 unique sequences each: 
• AidA1  
• EivE 
• Shiga 2 sub A 
• Shiga 1 sub A 
• Tox B 
 
Other organisms: 
25 B. anthracis unique sequences 
15 B. melitensis unique sequences 
21 C. perfringens unique sequences 
10 C. perfringens 16S unique sequences 
27 Vaccinia unique sequences 
25 Y. pestis unique sequences 
 
451 total sequences, in duplicate.  
902 spots on array 

 
Table 2. E. coli Array Design: This array contained E. coli strain specific oligonucleotides, toxin specific 
oligonucleotides and oligonucleotides to five other organisms. The lack of cross hybridization of genomic probes for 
E. coli O157:H7, K12 and C. perfringens demonstrates the specificity of each oligonucleotide for the organism from 
which the sequence was generated.  
 
 

The ability of a complex background to hybridize to oligonucleotides designed to detect 
specific organisms was tested by hybridizing arrays with fluorescently labeled DNA from B. 
anthracis, Y. pestis, B. melitensis, vaccinia virus, cow, pig, chicken and humans (Figure 6). The 
hybridization of these eight genomes including four microbial genomes and four large complex 
genomes, demonstrates specificity for the organisms of interest and no significant background 
hybridization.  
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Figure 6. Organisms specific hybridization: To demonstrate that the oligonucleotide probes on the array were 
organism-specific and did not cross hybridize with mammalian DNA generating a background hybridization pattern, 
four microbial genomes and cow, pig, chicken and human DNA was Cy-3 dCTP labeled by direct incorporation and 
hybridized to identical arrays containing these oligonucleotides. The organism used as the hybridization probe is 
identified at the top of the four smaller panels above. The identity of the oligos is provided by the initials BA 
(Bacillus anthracis), BM (Brucella melitensis), Vac (vaccinia virus), YP (Yersinia pestis) and BS (Bacillus subtilis). 
The graph on mammalian hybridization presents the hybridization data for the hybridization of these four genomes 
against the organism specific oligos presented in the upper four graphs. There was no cross hybridization between 
the oligos and the mammalian genomes. 
 
 
Hybridizations performed with a human probe and a probe containing vaccinia virus DNA in the 
presence of a human background is presented in Figure 7. The microarray was able to detect the 
presence of the vaccinia virus the vastly more complex background of the human genome.  
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Figure 7. Hybridization of human and vaccinia infected human probes to oligonucleotide microarrays: 
Specific hybridization of vaccinia cy3 labeled probe to the array and the lack of hybridization of cy3 labeled human 
probe to the array indicates that this method may be used for developing a diagnostic that identifies species and 
strains of organisms in animals and humans.   

 
 
Microarray data was generated for nine organisms. The identity of these organisms can be see in 
Figure 9 where organism specific oligonucleotides for B. anthracis, E. coli, B. melitensis and 
vaccinia virus are presented. An example of the hybridization data that resulted in the graphs in 
Figure 9 is presented in Figure 8. In these scatter plots, data for two hybridizations is presented, 
one on the X-axis, the other on the Y-axis. Spots that are located in the upper left or lower right 
quadrants of the scatter plot represent oligos that had the greatest differential of hybridization. 
Those that fall on the line Y=X which runs diagonally up and to the right  from the origin are non-
informative for the discrimination between the organisms on the scatter plot.  
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Figure 8. Scatter plot of microarray analysis: Hybridization intensities for 3840 oligonucleotides for C. 
perfringens (CP), B. anthracis (BA) and Y. pestis (YP) are presented as an example of how intensity of 
hybridization can be used to discriminate between organisms. The closer to the axis and farther away a spot 
is from the origin, the more specific the oligonucleotide is for the organism on that axis. Spots that fall on the 
line Y=X do not discriminate between organisms. 
 

 

Figure 9. Organism specific oligonucleotides identified from scatter plots: Six oligonucleotides per organism are 
used to demonstrate the ability to identify unique oligonucleotides using this method. The intensity of hybridization 
is presented for nine organisms. Oligonucleotides are on the x-axis. The intensity of the hybridization of each 
oligonucleotide for nine organisms is presented by the different colored bars. 
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Discussion 
 
The use of microarrays to identify microorganisms is not a new idea. Microarrays are currently 
being developed to discriminate between organisms based on 16S ribosomal RNA gene 
sequences and based on unique sequence identified from the small genomes of viruses. The 
problem with using 16S ribosomal RNA sequences for microarray analysis is that: 1) It ignores 
greater than 99% of sequence contained in the genome of an organism, 2) 16S ribosomal RNA 
gene sequences are very similar between organisms and they cannot typically be used to 
discriminate between strains of organisms and 3) They cannot be used to identify the presence of 
virulence genes and antibiotic resistance genes. Alternatively, the use of unique sequences from 
viruses works well, however, the bioinformatic methods used to identify unique sequences from 
the small genomes of viruses do not work on larger bacterial genomes, which can be three orders 
of magnitude larger than viral genomes.  
 
We have developed a bioinformatic method that identifies unique sequences from large bacterial 
genomes. We have utilized this method to identify unique sequences from Bacillus anthracis, 
Yersinia pestis, Vaccinia virus and Escherichia coli, the four organisms that are the subject of 
this contract. Microarrays were used as a detection platform to validate the unique sequences 
identified by our bioinformatic method. The unique sequences generated by our bioinformatic 
tool are not, however, platform dependant. These unique sequences will work with other 
detection platforms such as real time PCR, the current gold standard of microbial detection. As a 
demonstration of our ability to discriminate between organisms, we identified unique sequences 
that discriminated between organisms at the level of genus, species and strain. The data 
generated under this contract clearly show that strain level resolution between the genomes of E. 
coli K12 and E. coli O157:H7 is possible, as is species level discrimination between B. anthracis 
and B. subtilis and genus level discrimination between organisms such as B. anthracis and Y. 
pestis.  As a demonstration of the ability to detect pathogenic strains of an organism, we included 
virulence genes on the microarrays and clearly demonstrated that these genes track with the 
unique genomic sequences identified for the O157:H7 strain of E. coli. Further data is provided 
that demonstrates that the unique sequences, identified from the genomes of these organisms, do 
not cross react with the complex genomes of humans and agriculturally important species. This 
suggests that this method may be well suited to human diagnostic and agricultural applications.  
 
The power of this technique is obvious. By assaying for the presence of: 1) unique sequences at 
various levels of the phylogenetic tree, 2) virulence genes, 3) antibiotic resistance genes, 4) 
virulence plasmid sequences and 5) ribosomal genes, we are in a unique position to develop a 
novel method for the identification and characterization of the microorganisms. The application 
for this technology crosses many fields of research that are important to the Government: 
Environmental testing for bioterrorism by Homeland Security, Battlefield testing by the armed 
forces, Water quality testing by the Environmental Protection Agency, Human diagnostics by the 
Centers for Disease Control and Agricultural testing by the United States Department of 
Agriculture, to name a few. In addition to the obvious use of this method to identify known 
pathogens, we believe that our method will also permit the identification of naturally occurring 
virulent variants of non-pathogenic organisms, representing the ability to identify emerging 
threats to public health. Another less obvious application is the ability to detect the intentional 
manipulation of microbial genomes by bioterrorists, designed to place a pathogen in proximity to 
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the public. Genetic manipulation of genomes could place a virulence gene within the genome of 
a non-pathogenic organism, making it undetectable by current methods of pathogen detection. In 
addition, by utilizing many different organism specific sequences for each organism assayed, 
coupled with statistical analysis methods, false positives simply become a phenomenon of past 
technology. 
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Gantt chart  
 

Schedule for Identification of BW Threat 
Agents Using DNA Microarrays

Jul Aug Sep Jan Feb MarDec

FY 2002 FY 2003
Tasks and Milestones

Task 1. Identify primer pairs for 
target DNA sequences for unique 
and conserved regions of DNA.
Task 2. Test primer pairs to 
generate unique and conserved 
regions from Task 1.
Task 3. Demonstrate ability to 
identify and detect unique and 
conserved regions on microarray.

Task 4. Conduct experiments to 
determine sensitivity of the system.

Task 5. Analyze DNA microarray 
images.

Task 6. Demonstrate multiplexing 
capability through integration with 
other DNA elements.

Oct Nov MayApr Jun
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Conclusions 

 
 
We have successfully demonstrated the ability to identify unique sequences from the genomes of 
microorganisms and the ability to detect these unique sequences by microarray analysis. We 
present compelling evidence that these methods can be utilized to develop a microarray based 
detection method for the identification of organisms from different genera as well as closely 
related strains of bacteria. We also demonstrate the ability to detect the presence of virulence 
genes in pathogenic bacteria and cross hybridization to complex genomes. While these unique 
sequences were verified as informative for specific organisms by microarray analysis, it is almost 
certain that these unique sequences would be ideal targets for PCR based analysis methods. 
Utilizing these sequences on a microarray platform would provide a capability to identify all 
organisms of interest simultaneously, the ability to detect natural differences within genomes that 
lead to the evolution of emerging threat organisms and the intentional manipulation of genomes 
for the purpose of introducing a pathogen into the environment while avoiding classical detection 
methodologies.    
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